Mass fragmentographic determination of cholecalciferol and 25-hydroxycholecalciferol in human serum

B. Zagalak, H.-Ch. Curtius, Rosmarie Foschi, Gabrielle Wipf, U. Redweik and Maria-Jolanta Zagalak

University of Zurich, Department of Pediatrics, Division of Medical Chemistry, Kinderspital, CH-8032 Zurich (Switzerland), 22 May 1978

Summary. The serum extracts were purified by column-, thin layer- and high pressure liquid chromatography. Deuterated cholecalciferol and deuterated 25-hydroxycholecalciferol were used as internal standards. The quantitative analysis was performed using GC-mass fragmentography technique of TMS-ethers.

Many methods have been developed for the determination of vitamin D and its metabolites¹. Some of them are based on the protein-binding technique²⁻⁴; others use gas chromatography or a gas chromatography - mass spectrometry technique^{1,5-9}. The sensitivity and specificity of proposed assays varies and also depends on other parameters, such as extraction, choice of internal standards and occurrence of biological background in a sample^{1,10,11}. The well-developed gas chromatography and simple electron impact fragmentation patterns of trimethylsilyl ethers of cholecalciferol and its metabolites are very well suited to the mass fragmentographic technique. The GC-SIM method presented here could also be applied for specific investigations of vitamin D metabolism in complex biological systems. Using known procedures^{1,12-15}, we synthesized the internal standards 1, 2, and 3 (cholecalciferol-3,4-d2, cholecalciferol-2,2,3,4,4,6- d_6 and 25-hydroxycholecalciferol-26(27)- d_3 from cholesterol-3,4 β - d_2 ¹⁶, cholesterol-2,2,3,4,4,6- d_6 , and 25-hydroxycholesterol-26(27)- d_3 ^{8,17}, respectively. Cholesterold₆ was prepared from cholest-4-en-3-one which was labelled in D₂O: D₂SO₄: dioxane. The resulting cholest-4en-3-one-2,2,4,6,6,-d, was acetylated and reduced with

sodium borodeuteride in MeOD¹⁸.

Assay. 5 ml serum sample was mixed with 200 ng of 1 (or 2) and 200 ng of 3, 10 ml of water, 31 ml of methanol and 62 ml of dichloromethane. The sample was extracted for 30 min by shaking, the lower phase collected and the extraction repeated with 5 ml of methanol and 50 ml of dichloromethane. The combined extracts were evaporated to dryness and applied to a small alumina column, washed with n-hexane and finally eluted with ethanol. The ethanol-

ic eluate was further purified on an alumina TLC plate using 3% methanol in dichloromethane as a solvent system. Zones of cholecalciferol and 25-hydroxycholecalciferol were removed from the plate and eluted with ethanol. The eluates were further purified by high-pressure liquid chromatography in order to remove traces of cholesterol and other impurities. The HPLC of cholecalciferol was performed on a 4% silver nitrate-LiChrosorb SI 60 column $(0.3 \times 25 \text{ cm}, 10 \mu\text{m})$ with 4% tetrahydrofuran in n-hexane as a solvent system (flow 3.1 ml/min, 68 bar, retention times (R₁): cholecalciferol, 16 min 10 sec; cholesterol, 19 min 15 sec). The 25-hydroxycholecalciferol eluate was chromatographed on a LiChrosorb SI 60 column (0.3×25 cm, 10 µm (Merck)) with 2% MeOH in dichloromethane as a solvent system (flow 0.3 ml/min, 35 bar). The retention times (R_t) were: cholecalciferol, 5 min 47 sec; cholesterol, 6 min 39 sec; 25-hydroxycholecalciferol, 9 min 15 sec.

The samples were collected, evaporated, dried and finally silylated at room temperature with 50 μ l of the mixture of N,O-bis (trimethylsilyl)-trifluoroacetamide (BSTFA) and trimethylchlorosilane (TMCS) in the ratio 4:1. The samples were analyzed in a GC-MS apparatus equipped with SE-30 capillary column (figures 1 and 2). The pyroform of the TMS-derivative was measured. The peak of the TMS-isopyroform was only about 15% of the TMS-pyroform; however, the ratio of the pyro- to the isopyro-form depends on the nature of the column.

The following masses were monitored: cholecalciferol, (M^+) ; m/e 456 and 458 or 456 and 462, 25-hydroxycholecalciferol, (M^+-90) ; m/e 454 and 457.

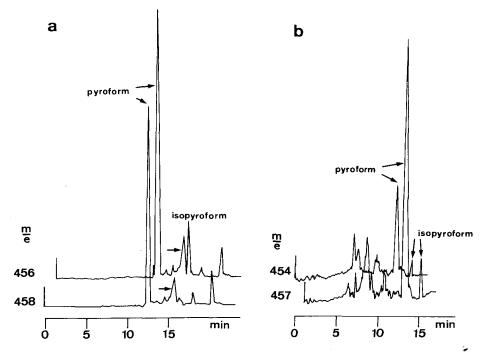
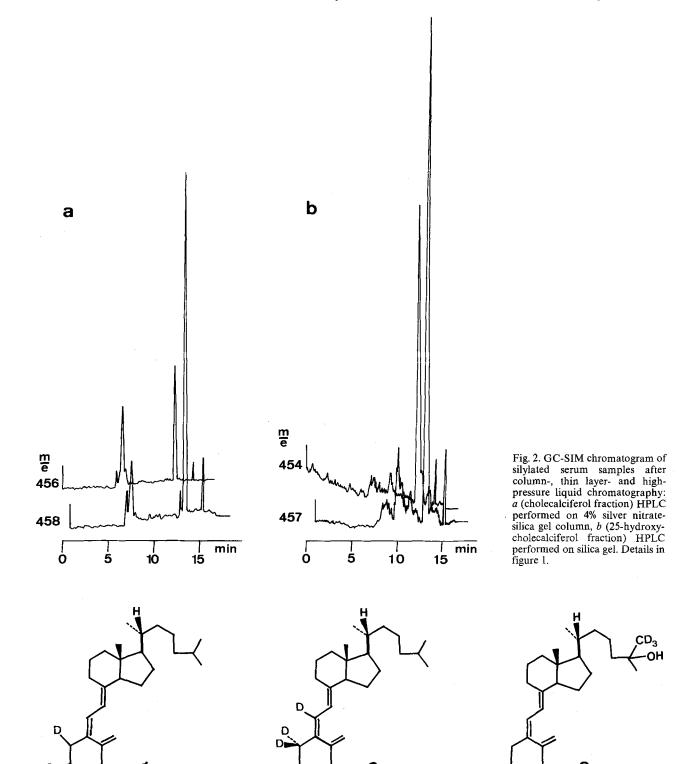



Fig. 1. GC-SIM chromatogram of trimethylsilyl ethers of cholecal-ciferol (a) and 25-hydroxychole-calciferol (b). GC: Capillary column SE-30 (0.29 mm i.d., 25 m), helium 1.8 ml/min. a Temperature program 220°C-260°C, 2°/min, b isothermal hold at 250°C. MS: Micromass 16F MS-apparatus, electron impact mode, 24 eV, 95 μA trap current, ACC Voltage 4 kV, SEV Voltage 3 kV, cycle time 0.3 sec.

GC-SIM assay of cholecalciferol and 25-hydroxycholecalciferol in serum was possible only after careful purification of serum extracts; therefore, special attention was paid to this problem. Crude serum extracts after filtration on LH-20 Sephadex⁸ were useless because of high biological background and extremely large excess of cholesterol.

Application of column- and thin layer chromatography on

alumina was also not sufficient in the assaying of 25-hydroxycholecalciferol (figure 3) because of at least 1 peak present next to the TMS-pyroform of 25-hydroxycholecalciferol.

The method described allowed the assay of both vitamins in ng levels, even when only 2 ml of serum were used. Linearity for this assay was observed between 5 and 300 ng

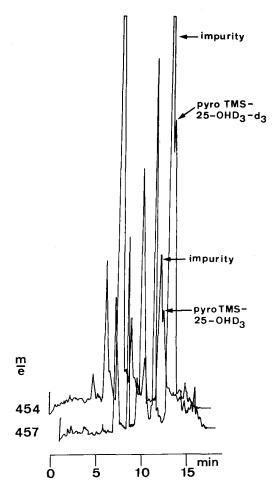


Fig. 3. GC-SIM chromatogram of silylated serum sample; fraction: 25-hydroxycholecalciferol. The sample was purified by columnand thin layer chromatography on alumina. Details in figure 1.

after the addition of cholecalciferol and 25-hydroxycholecalciferol to serum samples. Similar assay for 1,25-dihydroxycholecalciferol in serum is under investigation.

- H.F. DeLuca and John W. Blunt, in: Methods in Enzymology, vol. 18C, p. 709. Ed. S.P. Colowick, N.O. Kaplan, D.B. McCormick and L.D. Wright. Academic Press, New York/London 1971.
- B. Garcia-Pascual, A. Peytremann, B. Courvoisier and D. E. M. Lawson, Clin. chim. Acta 68, 99 (1976).
- 3 M. Gemeiner, Microchim. Acta 1976 II, 161.
- 4 R. Bouillon, P. Van Kerkhove and P. De Moor, Clin. Chem. 22, 364 (1976).
- 5 P.P. Nair and Stella deLeon, Archs Biochem. Biophys. 128, 663 (1968).
- 6 A.P. De Leenheer and A.A.M. Cruyl, J. chromatogr. Sci. 14, 434 (1976).
- 7 A.A.M. Cruyl and A.P. De Leenheer, in: Vitamin D: Biochemical, Chemical and Clinical Aspects Related to Calcium Metabolism, p. 455. Ed. A.W. Norman, K. Schaefer, J.W. Coburn, H.F. DeLuca, D. Fraser, H.G. Grigoleit, D.V. Herrath. Walter de Gruyter, Berlin/New York 1977.
- 8 I. Björkhem and I. Holmberg, Clin. chim. Acta 68, 215 (1976).
- J. McK. Halket and B.P. Lisboa, Acta endocr. 87, suppl. 215, 120 (1978).
- 10 P.W. Lambert, B.J. Syverson, C.D. Arnaud and T.C. Spelsberg, J. Steroid Biochem. 8, 929 (1977).
- 11 A.A.M. Cruyl, Thesis, University of Ghent, Belgium, 1976.
- 12 S. Bernstein, L. J. Binovi, L. Dorfman, K.J. Sax and Y. Subbarow, J. org. Chem. 14, 433 (1949).
- 13 S.J. Halkes and N.P. Van Vliet, Rec. Trav. Chim. 88, 1080 (1969).
- 14 T. Suda, H. F. DeLuca and R. B. Hallick, Analyt. Biochem. 43, 139 (1971).
- 15 P.A. Bell and W.P. Scott, J. label. Compounds 9, 339 (1973).
- 16 F.F. Knapp, Jr, and G.J. Schroepfer, Jr, Chem. Phys. Lipids 17, 466 (1976).
- 17 A.I. Ryer, W.H. Gebert and N.M. Murrill, J. Am. chem. Soc. 72, 4247 (1950).
- 18 W.G. Dauben and J.F. Eastham, J. Am. chem. Soc. 73, 4463 (1951).
- 19 The authors thank Dr. A. Fürst (F.Hoffmann-La Roche, Basel) for a sample of 3β-acetoxy-27-norcholest-5-en-25-one.

The reported occurrence of L-canavanine in soya bean, Glycine max¹

G.A. Rosenthal²

T. H. Morgan School of Biological Sciences, Lexington (Kentucky 40506, USA), 14 February 1978

Summary. The reported occurrence of L-canavanine in soya bean, Glycine max could not be verified by enzyme treatment of the extracted non-protein amino acids of the seed.

Recently, Fischer et al.³ reported the putative occurrence of L-canavanine in the seed of the soya bean, Glycine max. This secondary plant metabolite is a principal nitrogenstoring non-protein amino acid of certain legumes⁴. Fischer et al.3 made the interesting observation that when ground meat was adulterated with soya bean meal, automated amino acid analysis of the meat sample extract produced a ninhydrin-positive peak believed to be canavanine. This finding, if confirmed, would be important since canavanine is a highly toxic non-protein amino acid and soya bean serves as an increasingly important source of human dietary protein. Moreover, canavanine possesses potent insecticidal properties⁴, and, if present, could be utilized in experimental studies of toxic natural product-herbivore interaction. Several extensive plant surveys have established that canavanine's distribution is limited to the Papilionoideae (Faboideae), a major subfamily of the Leguminosae⁵⁻⁷,

where it has provided insight into the phylogenetic relationship of certain legumes^{8,9}. The efforts of Tschiersch⁷, Bell et al.⁹, and Lackey¹⁰ all failed to produce positive evidence for seed canavanine in *G.max*. Several ppm of canavanine have been reported in the garden onion, *Allium cepa*¹¹ and in the fungus of commerce, *Agaricus campestris*¹². However, these reports have either been challenged¹³ or have not been corroborated by independent methods for establishing and verifying minute levels of canavanine. In each instance, canavanine's purported occurrence was predicated solely upon isolation of a ninhydrin-positive substance having the column retention time of canavanine.

Materials and methods. The soya bean sample consisted of an approximately equal mixture of the following varieties: Woodworth, Forrest, Bonus, Dare, York, Williams, Corsoy, Essex Hood 75, and Mack. The soya bean meal (350 g), prepared as described previously¹⁴, was extracted,